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Abstract. We undertake the study of size-change analysis in the
context of Reverse Mathematics. In particular, we prove that
the SCT criterion [LJB01, Theorem 4] is equivalent to IΣ0

2 over
RCA0. Ramsey’s theorem for pairs, Size-change termination, Re-
verse Mathematics, Σ0

2-induction.

1. Introduction

Ramsey’s theorem for pairs (RT2) is one of the main characters in
Reverse Mathematics. It states that for any natural number k and for
any edge coloring of the complete graph with countably many nodes
in k-many colors, there exists an infinite homogeneous set, i.e. there
exists an infinite subset of nodes whose any two elements are connected
with the same color [Ram30].

As highlighted by Gasarch [Gas15], Ramsey’s theorem for pairs can
be used to prove termination. For instance, Podelski and Rybalchenko
characterized the termination of transition based programs as a prop-
erty of well-founded relations by using Ramsey’s theorem for pairs
[PR04]. In [SY16b] we started investigating the termination analysis
from the point of view of Reverse Mathematics. We proved the equiv-
alence between the termination theorem of Podelski and Rybalchenko
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and a corollary of Ramsey’s theorem for pairs, which is weaker than
Ramsey’s theorem for pairs itself.

The termination theorem is not the only result which characterizes
the termination of some class of programs. In [LJB01] Lee, Jones and
Ben-Amram introduced the notion of size-change termination (SCT)
for first order functional programs. Size-change analysis is a gen-
eral method for automated termination proofs. In fact, this method
has been applied in the termination analysis of higher-order programs
[JB04], logic programs [CG03], and term rewrite systems [TG05].

Informally, a program is size-change terminating (SCT) if every in-
finite state transition sequence would cause an infinite sequence of
data values which is weakly decreasing and strictly decreasing infin-
itely many times. If the domain of data values is well-founded, such as
the natural numbers, there cannot be such a sequence, thus SCT is a
sufficient condition for termination [LJB01, Theorem 1].

Size-change termination is based on the notion of size-change graph
(see Subsection 2.2). Given a first order functional program P we
associate to every call f → g a bipartite graph which describes the
relation between source and target parameter values. These graphs are
called size-change graphs.

In this paper we start the investigation of size-change termination in
the framework of Reverse Mathematics. In particular, we analyse the
following criterion for testing SCT [LJB01, Theorem 4]:

Theorem 1.1 (SCT criterion). Let G be a set of size-change graphs for
a first order functional program P . Then G is SCT iff every idempotent

G ∈ cl(G) has an arc x
↓−→ x.

The original proof of the SCT criterion is based on Ramsey’s theorem
for pairs. In this paper we show that this is far from optimal and
pinpoint the exact strength of the SCT criterion from the point of view
of Reverse Mathematics. For our analysis we consider the following
version, where we consider size-change graphs only.

Theorem 1.2 (SCT criterion for graphs). Let G be a set of size-change
graphs. Then G is SCT iff every idempotent G ∈ cl(G) has an arc

x
↓−→ x.

To the aim of studying the strength of the SCT criterion we introduce
and study a corollary of Ramsey’s theorem for pairs, called Triangle
Ramsey’s theorem (Triang). It states that for any natural number k
and for any edge coloring of the complete graph with countably many
nodes in k-many colors, there is some node which is, for some color
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i ∈ k, the first node of infinitely many triangles homogeneous in color
i. As far as we know this corollary does not appear in the literature.

We show that Triang implies the SCT criterion and that the SCT
criterion implies the Strong Pigeonhole Principle (SPP). From these
(and some further) results we are able to conclude that both SCT
criterion and Triang are equivalent to Σ0

2-induction (IΣ0
2).

Theorem 1.3 (RCA0). The following are equivalent:

(1) IΣ0
2

(2) Triang
(3) SCT criterion

1.1. Notation. Given a set X ⊆ N, let [X]2 denote the set of 2-
element subsets ofX. As usual, we identify [X]2 with the set {(x, y) : x, y ∈
X ∧ x < y}. We also identify a natural number k with the set
{0, . . . , k − 1}. For k ∈ N, we call a function c : [N]2 → k a col-
oring of [N]2 in k-many colors.

For a set X ⊆ N, X<N denotes the set of finite sequences of elements
in X. Given a set X and a sequence σ ∈ X<N we denote by |σ| the
length of the sequence, by last(σ) the last element of the sequence and
by σ(i) the i-th element of the sequence, if it exists. Note that k<N is
the set of finite sequences of natural numbers less than k.

1.2. Reverse Mathematics. Reverse Mathematics is a program in
mathematical logic introduced by Harvey Friedman in [Fri75], which
stems from the following question. Given a theorem of ordinary math-
ematics, what is the weakest subsystem of second order arithmetic in
which it is provable?

Amongst the several subsystems of second order arithmetic (see
[Sim99] for a detailed description), in this paper we consider only
few extensions of RCA0 (Recursive Comprehension Axiom). RCA0 is
the standard base system of Reverse Mathematics. It consists of the
usual axioms of first order arithmetic for 0, 1,+,×, <, induction for
Σ0

1-formulas (IΣ0
1) and comprehension for ∆0

1-formulas.
The infinite pigeonhole principle (RT1) and Ramsey’s theorem for

pairs (RT2) are defined as follows.

(RT1
k): For any c : N→ k there exists i < k such that c(x) = i for

infinitely many x.
(RT1): ∀k ∈ N RT1

k.

(RT2
k): For any c : [N]2 → k there exists an infinite homogeneous

set X ⊆ N, that is c � [X]2 is constant.
(RT2): ∀k ∈ N RT2

k.
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Let IΣ0
2 be induction for Σ0

2-formulas. It is known that RT2 implies
the bounding principle for Σ0

3-formulas (BΣ0
3) over RCA0 [Hir87], and

so in particular IΣ0
2. As a side result here we provide a different proof

of the fact that RT2 implies IΣ0
2. Indeed we introduce an immediate

consequence of RT2, the Triangle Ramsey’s theorem (Triang), which
turns out to be equivalent to IΣ0

2.

(Triangk): For any coloring c : [N]2 → k there exist i ∈ k and
t ∈ N such that c(t,m) = c(t, l) = c(m, l) = i for infinitely
many pairs m < l.

(Triang): ∀k ∈ N Triangk

2. The SCT framework

In this section we describe the size-change method for first order
functional programs as in [LJB01]. All the definitions are made in
RCA0 except for the semantic notion of safety.

2.1. Syntax. We consider the following basic first order functional lan-
guage:

x ∈ Par parameter identifier

f ∈ Fun function identifier

o ∈ Op primitive operator

a ∈ AExp arithmetic expression

::= x | x+ 1 | x− 1 | o(a, . . . , a) | f(a, . . . , a)

b ∈ BExp boolean expression

::= x = 0 | x = 1 | x < y | x ≤ y | b ∧ b | b ∨ b | ¬b
e ∈ Exp expression

::= a | if b then e else e

d ∈ Def function definition

::= f(x0, . . . , xn−1) = e

P ∈ Prog program

::= d0, . . . , dm−1

Remark 2.1. This language is Turing complete.

A program P is a list of finitely many defining equations f(x0, . . . , xn−1) =
ef , where f ∈ Fun and ef is an expression, called the body of f . Let
x0, . . . , xn−1 be the parameters of f , denoted Par(f), and let n be the
arity of f , denoted ar(f).
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By Fun(P ) we denote the set of functions of P . We also assume that
a program P specifies an initial function f ∈ Fun(P ). The idea is that
P computes the (partial) function f : Nar(f) → N.

In [LJB01] the expression evaluation is based on a left-to-right call-
by-value strategy given by denotational semantics. RCA0 is not capa-
ble to formalize denotational semantics, and hence we need to consider
other approaches if we want to study termination over RCA0 (for in-
stance, by operational semantics). Anyway we do not formally discuss
semantics. For the sake of exposition, it is enough to say that one
evaluates a program function f given an assignment of values u to its
parameters (i.e. an element of Nar(f)) by evaluating the body of f , that
is f(u) = ef (u).

Example 2.1 (Péter-Ackermann).

A(x, y) = if x = 0 then y + 1 else

if y = 0 then A(x− 1, 1)

else A(x− 1, A(x, y − 1))

2.2. Size-change graphs. In order to express the notion of size-change
termination, first of all we need the definition of size-change graph (see
[LJB01, Definition 3]).

Definition 2.2 (size-change graph). Let P be a program and f, g ∈
Fun(P ). A size-change graph G : f → g for P is a bipartite graph on
(Par(f),Par(g)). The set of edges is a subset of Par(f)×{↓,⇓}×Par(g)
such that there is at most one edge for any x ∈ Par(f) and y ∈ Par(g).

We say that f is the source function of G and g is the target function
of G. We call (x, ↓, y) the decreasing edge (strict arc), and we denote it

by x
↓−→ y. We call (x,⇓, y) the weakly-decreasing edge (non-strict arc),

and we denote it by x
⇓−→ y. We write x → y ∈ G as a shorthand for

x
↓−→ y ∈ G ∨ x ⇓−→ y ∈ G.
Note that the absence of edges between two parameters x and y in

the size-change graph G indicates either an unknown or an increasing
relation in the call f → g.

Informally, a size-change graph is an approximation of the state tran-
sition relation induced by the program. A size-change graph G : f → g
for a call τ : f → g is safe if it reflects the relationship between the
parameter values in the program call.

In more detail, a state of a program P is a pair (f,u), where f ∈
Fun(P ) and u is a tuple of length ar(f). If in the body of f ∈ Fun(P )
there is a call

. . . τ : g(e0, . . . , em−1)
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we define a state transition (f,u)
τ−→ (g,v) to be a pair of states

such that v is the sequence of values obtained by the expressions
(e0, . . . , em−1) when f is evaluated with values u.

Let Par(f) = {x0, . . . , xn−1} and Par(g) = {y0, . . . ym−1}. We say
that a size-change graph G : f → g is safe for τ if every edge is safe,
where an edge xi

r−→ yj is safe if for any u ∈ Nn and v ∈ Nm such that

(f,u)
τ−→ (g,v), r = ↓ implies that ui > vj and r = ⇓ implies that

ui ≥ vj.
Note for instance that the size-change graph without edges is always

safe.

Example 2.3 (Péter-Ackermann).

A(x, y) = if x = 0 then y + 1 else

if y = 0 then τ0 : A(x− 1, 1)

else τ1 : A(x− 1, τ2 : A(x, y − 1))

There are three calls τi (i < 3) safely described by the following
size-change graphs:

x

y

x

y

↓

G0,1 : A→ A

x

y

x

y

⇓

↓

G2 : A→ A

The size-change graph G0,1 safely describes both calls τ0 : A(x−1, 1)
and τ1 : A(x−1, A(x, y−1)). In particular, notice that in the call τ1 the
parameter value x decreases no matter what the value of the expression
A(x, y − 1) is. Finally, the size-change graph G2 safely describes the
call τ2 : A(x, y − 1).

Note that we could have assumed that for any parameter in the
target there is at most one edge, since in every call of the programs we
consider any parameter value in the target depends at most from one
parameter in the source. However this restriction is not essential. Note
also that the SCT framework has been generalized in order to deal with
other kinds of monotonicity constraints [BA02], where SCT only deals
with two constraints x > y (a strict arc) and x ≥ y (a non-strict arc).

Nonetheless we want to emphasize that the notion of size-change
graph is clearly independent of that of a program and so we can define
it directly. For simplicity we may assume that every function f ∈ Fun
comes with a set of parameters Par(f) of size ar(f).
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Definition 2.4 (size-change graph). Let f, g ∈ Fun. A size-change
graph G : f → g is a bipartite graph on (Par(f),Par(g)). The set of
edges is a subset of Par(f)× {↓,⇓}×Par(g) such there is at most one
edge for any x ∈ Par(f) and y ∈ Par(g).

2.3. SCT criterion.

Definition 2.5 (composition). As in [HJP10], given two size-change
graphs G0 : f → g and G1 : g → h we define their composition G0;G1 :

f → h. The composition of two edges x
⇓−→ y and y

⇓−→ z is one edge

x
⇓−→ z. In all other cases the composition of two edges from x to y

and from y to z is the edge x
↓−→ z. Formally, G0;G1 is the size-change

graph with the following set of edges:

E = {x ↓−→ z : ∃y ∈ Par(g) ∃r ∈ {↓,⇓} ((x
↓−→ y ∈ G0 ∧ y

r−→ z ∈ G1)

∨ (x
r−→ y ∈ G0 ∧ y

↓−→ z ∈ G1))}

∪{x ⇓−→ z : ∃y ∈ Par(g)(x
⇓−→ y ∈ G0 ∧ y

⇓−→ z ∈ G1) ∧ ∀y ∈ Par(g)

∀r, r′ ∈ {↓,⇓} ((x
r−→ y ∈ G0 ∧ y

r′−→ z ∈ G1) =⇒ r = r′ = ⇓)}.
Observe that the composition operator “;” is associative. Moreover

we say that the size-change graph G is idempotent if G;G = G.
Given a finite set of size-change graphs G, cl(G) is the smallest set

which contains G and is closed by composition. Formally cl(G) is the
smallest set such that

• G ⊆ cl(G);
• If G0 : f → g and G1 : g → h are in cl(G), then G0;G1 ∈ cl(G).

Definition 2.6 (multipath). A multipathM is a sequenceG0, . . . , Gn, . . .
of graphs such that the target function of Gi is the source function of
Gi+1 for all i. A thread is a connected path of edges in M that starts
at some Gt, where t ∈ N. A multipath M has infinite descent if some
thread in M contains infinitely many decreasing edges.

Definition 2.7 (description). A description G of P is a finite set of
size-change graphs such that to every call τ : f → g of P corresponds
exactly one Gτ ∈ G.

A description G of P is safe if each graph in G is safe. Note that
there are finitely many descriptions, and in particular finitely many
safe descriptions.

Definition 2.8 (SCT description). We say that a description G of
P is size-change terminating (SCT) if every infinite multipath M =
G0, . . . , Gn, . . . , where every graph Gn ∈ G, has an infinite descent.
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It is clear that a program P with a safe SCT description does not
have infinite state transition sequences. Thus the existence of a safe
SCT description is a sufficient condition for termination.

We now can state the SCT criterion.

Theorem 2.2 (SCT criterion). Let G be a description of P . Then G
is SCT iff every idempotent G ∈ cl(G) has an arc x

↓−→ x.

To the aim of analysing in Reverse Mathematics it is convenient to
state the SCT criterion for arbitrary sets of size-change graphs.

Definition 2.9 (SCT criterion for graphs). Let G be a finite set of
size-change graphs. Then G is SCT iff every idempotent G ∈ cl(G) has

an arc x
↓−→ x.

It is not difficult to see that the two formulations of the SCT criterion
are equivalent. In fact, given a finite set G of size-change graphs, it is
straightforward to define a program P such that G is a description of
P . In more detail, let f0, . . . , fm be the finite set of source and target
functions of G. Without loss of generality, we may assume that all
functions have the same arity n ∈ N. For any i, let fi0 , . . . , fik−1

be
the functions (with repetition if there are more graphs with the same
source and target functions) which correspond to the target of a graph
whose source is fi. Write the code:

fi(x0, . . . xn−1) = τ0 : fi0(e
0
0, . . . , e

0
n−1) if x0 = 0.

= . . .

= τk−1 : fik−1
(ek−10 , . . . , ek−1n−1) if x0 = k − 1.

where the expression ehj is determined by the source and the kind of the
edge to xj in the corresponding graph, if such an edge exists. Otherwise
it is xj + 1.

The union of these codes is a program PG. Of course, G is a descrip-
tion of PG. Therefore:

Proposition 2.3 (RCA0). The following are equivalent:

(1) SCT criterion
(2) SCT criterion for graphs

3. Proving the SCT criterion

The classical proof of the SCT criterion [HJP10] uses Ramsey’s theo-
rem for pairs. Actually, what we really need is that there exist infinitely
many monochromatic triangles which share a fixed vertex: we need the
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homogeneous cliques in order to prove that the graph is idempotent and
that there are infinitely many strictly decreasing edges in the thread
and we need that they share a fixed vertex in order to guarantee the
continuity of the path. This is why we introduce the principle Triang.

(Triangk): For any coloring c : [N]2 → k there exist i ∈ k and
t ∈ N such that c(t,m) = c(t, l) = c(m, l) = i for infinitely
many pairs {m, l}.

(Triang): ∀k ∈ N Triangk.

We also introduce the following strengthening of the infinite pigeon-
hole principle:

(SPPk): For any coloring c : N → k there exists I ⊆ k such that
i ∈ I iff i < k and c(x) = i for infinitely many x.

(SPP): ∀k ∈ N SPPk.

For the reversal we use the fact that SPP is equivalent to Σ0
2-induction.

Lemma 3.1 (RCA0). The following are equivalent:

(1) IΣ0
2

(2) SPP

Proof. It is well-known that IΣ0
2 is equivalent over RCA0 to bounded

comprehension for Π0
2-formulas, that is the axiom schema

∀k ∃X ∀i (i ∈ X ↔ i < k ∧ ϕ(i)),

where ϕ is Π0
2. It immediately follows that IΣ0

2 implies SPP. Let
us show that SPP implies bounded Π0

2-comprehension. Let ϕ(i) =
∀x∃y θ(i, x, y). We define c : N → k + 1 by primitive recursion as
follows:

(1) Let s = 0 and xi = 0 for all i < k;
(2) Suppose we have defined c(x) for every x < s. For all i < k, if
∃y < s θ(i, xi, y), let c(s+ i) = i and xi = xi + 1. Otherwise let
c(s+ i) = k;

(3) Let s = s+ k. Return to step 2.

By SPP, the set I = {i ≤ k : ∃∞x c(x) = i} exists. One can check that
I \ k = {i < k : ∀x∃y θ(i, x, y)}. �

The following shows that one direction of the SCT criterion is already
provable in RCA0.

Proposition 3.2 (RCA0). Let G be a finite set of size-change graphs.
If every multipath M = G0, . . . , Gn, . . . has an infinite descent, then

every idempotent G ∈ cl(G) has an arc x
↓−→ x.
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Proof. Let G be idempotent. Then M = G,G, . . . , G, . . . is a mul-
tipath. By hypothesis there exists an infinite descent. Since G is
idempotent, one can define an infinite sequence x0, x1, x2, . . . such that

xi
↓−→ xi+1 ∈ G. As there are finitely many parameters, by the finite

pigeonhole principle, which is provable in RCA0, there exist i < j such

that x = xi = xj. By idempotence of G, x
↓−→ x ∈ G. �

Theorem 3.3 (RCA0). Triang implies the SCT criterion.

Proof. We prove the SCT criterion for graphs. Let G be a finite set of
size-change graphs and assume that any idempotent graph in cl(G) has

a strict arc x
↓−→ x for some parameter x. Let

Mπ = G0, . . . , Gn, . . . .

We aim to prove that Mπ has an infinite descent. Define c : [N]2 →
cl(G) as follows:

c(i, j) = Gi; . . . ;Gj−1.

By applying Triang|cl(G)| to the coloring c, we have:

∃t∃G ∈ cl(G)∀n∃m, l(n < m < l∧t < m∧c(t,m) = c(t, l) = c(m, l) = G).

Then G is idempotent, indeed

G;G = c(t,m); c(m, l) = c(t, l) = G.

By hypothesis, we have that there exists x
↓−→ x ∈ G. By Σ0

0-comprehension,
let f : N3 → N be such that f(n,m, l) = 0 iff n < m < l and
t < m and c(t,m) = c(t, l) = c(m, l) = G. By minimization (see
Simpson [Sim99, Theorem II.3.5]), there exists a function h : N → N2

such that for all n we have that f(n, h0(n), h1(n)) = 0, where h(n) =
(h0(n), h1(n)). Now define by primitive recursion a Triang witness
function g : N → N by letting g(0) = h(0) and g(n + 1) = h(g1(n)),
where g(n) = (g0(n), g1(n)). Therefore, for all n

• t < g0(n) < g1(n) < g0(n+ 1) and
• c(t, g0(n)) = c(t, g1(n)) = c(g0(n), g1(n)) = G.

We claim that there exists an infinite descent starting from x in

Gt. Since x
↓−→ x ∈ c(t, g0(0)), it is sufficient to show that x

↓−→ x ∈
c(g0(n), g0(n + 1)) for any n. As x

↓−→ x ∈ c(t, g0(n + 1)), there exists
y such that x → y ∈ c(t, g1(n)) and y → x ∈ c(g1(n), g0(n + 1)), and
at least one of them is strict. Now c(t, g1(n)) = c(g0(n), g1(n)), and so

x→ y ∈ c(g0(n), g1(n)). Therefore we have x
↓−→ x ∈ c(g0(n), g0(n+1)),

as desired. �

Theorem 3.4 (RCA0). The SCT criterion implies SPP.
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Proof. We show that the SCT criterion for graphs implies SPP.
We first prove the thesis for k = 2. This serves as an illustration of

the general case. Note in fact that SPPk is provable in RCA0 for every
standard k ∈ N.

Given c : N → 2, we want to show that there exists I ⊆ 2 such
that i ∈ I iff ∃∞x c(x) = i. Let us define G as follows. The set G
consists of three size-change graphs G0, G1, G2 on parameters z0, z1, z2.

For i < 3, the graph Gi has only one strict arc zi
↓−→ zi and non-strict

arcs zj
⇓−→ zj for j > i. Note that every G ∈ cl(G) contains a strict arc

z
↓−→ z. Therefore, by the SCT criterion, every multipath of G has an

infinite descent. Let

g(x) =


0 if c(x) = 0 ∧ c(x+ 1) = 0

1 if c(x) = 1 ∧ c(x+ 1) = 1

2 otherwise

Consider the multipath M = Gg(0), Gg(1), . . .. Hence there exists an
infinite descent in M. This implies that there exists a parameter zi

that is strictly decreasing infinitely many times, that is zi
↓−→ zi ∈ Gg(x),

viz. g(x) = i, for infinitely many x. If i < 2, it means that from some
point on c(x) = i and so I = {i}. If i = 2, then the color changes
infinitely many times and so I = {0, 1}.

General case. Let c : N → k be a given coloring. We want to show
that

I∞ = {i < k : ∃∞x c(x) = i}
exists.

Let I be the set of nonempty subset of k and Par(I) consist of
parameters zI for every I ∈ I. Define size-change graphs GA on
(Par(I),Par(I)) for any A ⊆ I as follows. Let m be the maximum
size of an element of A. Then

• zI
↓−→ zI ∈ G iff I ∈ A and |I| = m;

• zI
⇓−→ zI ∈ G iff I /∈ A and |I| ≥ m.

Let G = {GA : A ⊆ I}.

Claim 3.4.1. Every idempotent graph G ∈ cl(G) has an arc zI
↓−→ zI

for some I.

Proof. We show that every graph G ∈ cl(G) has a strict arc zI
↓−→ zI for

some I. Let G = G0;G1; . . . ;Gl−1 with Gs ∈ G for all s < l. Let As be
the A corresponding to Gs. Choose I ∈

⋃
s<lAs of maximum size. We

claim that zI
↓−→ zI ∈ G. Let p < l be such that I ∈ Ap. By definition,
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zI
↓−→ zI ∈ Gp. By using the maximality of I it is easy to show that for

every s < l either zI
↓−→ zI ∈ Gs or zI

⇓−→ zI ∈ Gs. �

We now define a multipath M = G0, G1, . . . , Gx, . . . as follows.
Let ΓI be a marker for I ∈ I. At the beginning every marker ΓI

points to the first color of I (in the standard ordering of the natural
numbers). At stage x, if the marker ΓI points to the color i and c(x)
is the color right after i in I (in the standard ordering of the natural
numbers), then move the marker to the color c(x). If i is the last color
of I and c(x) is the first color of I, move the marker to the first color
of I. It is not difficult to see within RCA0 that every color in I appears
infinitely often iff the marker points to the last color of I infinitely
often.

Call I a guess at stage x if at the beginning of stage x the marker
ΓI points to the last color of I and c(x) equals the first color of I. The
idea is that at stage x we are guessing that I = I∞. Note that we can
have more guesses at the same stage and that I is a guess at infinitely
many stages iff I ⊆ I∞.

Now let Gx = GA where A is the set of guesses at stage x. By
the SCT criterion for graphs, we have an infinite descent in M for
some parameter zI starting at some point t. We aim to show that I
is the right guess, that is I = I∞. Now, there exist infinitely many x

such that zI
↓−→ zI ∈ Gx, and in particular I is a guess at stage x for

infinitely many x. It follows that I ⊆ I∞. It is sufficient to show that
I is maximal. Suppose not and let J ⊃ I be such that every color in J
appears infinitely often. Therefore there exists x > t such that J is a
guess at stage x. By definition, in Gx there is no arc from zI to zI , a
contradiction. �

Therefore we can conclude that Triang ≥ SCT criterion ≥ IΣ0
2. Ac-

tually we can prove that they are all equivalent.

Theorem 3.5. Over RCA0 the following are equivalent:

(1) IΣ0
2

(2) Triang
(3) SCT criterion
(4) SCT criterion for graphs

Proof. We need only to show that IΣ0
2 implies Triang. As shown in

[SY16a] RT2 is Π1
1-conservative over BΣ0

3, the bounding principle for
Σ0

3-formulas. So, since RT2 trivially implies Triang (which is a Π1
1-

statement), then also BΣ0
3 does. It is known that BΣ0

3 is Π̃0
4-conservative

over IΣ0
2, where a statement is Π̃0

4 if it is of the form ∀Xϕ(X) and
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ϕ(X) ∈ Π0
4. This follows as a particular case from the analogue result

in first order arithmetic that BΣn+1 is Πn+2-conservative over IΣn for
all n ≥ 0 (see [HP98, Chapter IV, Section 1(f)]). Finally, one can check

that Triang is Π̃0
4, hence the thesis. �

Remark 3.6. One can directly show that the Péter-Ackermann func-
tion is SCT in both senses. Indeed let G0,1, G2 be the size change
graphs of the Péter-Ackermann function as in Example 2.3. Let M =
G′0, . . . , G

′
n, . . . be an infinite multipath. We have

∀n ∃m ≥ n G′n = G0,1 ∨ ∃n ∀m ≥ n G′n = G2.

In the first case we have an infinite descent for x starting in G′0. The
second case yields an infinite descent for y starting in some Gn, since
all graphs in the multipath from n on are G2. Note that this proof is
in classical logic, since it requires the Law of Excluded Middle.

In general, if G has size k for some standard k ∈ ω, then RCA0 proves
the SCT criterion for G. This follows from the following:

Proposition 3.7. For any standard k ∈ ω,

RCA0 ` Triangk.

Proof. Note that RCA0 ` RT1
k for all standard k ∈ N. We prove Triangk

by (external) induction on k.
Given a coloring c : [N]2 → k, let c0 : N → k such that c0(x) =

c(0, x) and let X be the infinite homogeneous set given by RT1
k. Let

{xn : n ∈ N} be the increasing enumeration of X. Suppose i = c(0, x0).
By the law of excluded middle, we have:

∀n∃m, l(l > m > n∧c(xm, xl) = i) ∨ ∃n∀m, l(l > m > n =⇒ c(xm, xl) 6= i).

In the first case we are done. In the second case let Y = {x ∈ X : x > xn}.
Then Y is an infinite homogeneous set in (k − 1)-many colors. By
the induction hypothesis (on d : [N]2 → k − 1 such that d(a, b) =
c(xn+a, xn+d)) we are done again. �

4. Conclusion and further works

In this paper we addressed the study of size-change analysis in the
context of Reverse Mathematics. We determined the exact strength of
the SCT criterion by proving that it is equivalent to a weak version of
Ramsey’s theorem for pairs, which turns out to be equivalent to Σ0

2-
induction over RCA0. In particular the proof of the SCT criterion does
not require full Ramsey’s theorem for pairs.
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One of the motivations for studying size-change termination in the
framework of Reverse Mathematics is that the Péter-Ackermann func-
tion is size-change-terminating. Actually, this can be proved in RCA0,
whereas it is well known that the totality of the Péter-Ackermann func-
tion is not provable in RCA0. This arises the question of what is needed
in order to show the soundness of size-change termination (SCT sound-
ness), that is the statement that every SCT program terminates.

The classical proof is based on the fact that “if a program does
not terminate then there exists an infinite state transition sequence”.
This statement seems to require König’s lemma, which is equivalent
to Arithmetical Comprehension Axiom (ACA0) over the base system
RCA0. Roughly, ACA0 asserts the existence of the jump of every set of
natural numbers.

We suspect that a direct proof of the SCT soundness does not require
any comprehension (set existence) axiom. In fact, it is known that SCT
programs compute exactly the multiply recursive functions [BA02]. On
the other hand, the class of multiply recursive functions coincides with
the class M =

⋃
α<ωω Fα, where (Fα)α is the fast growing hierarchy

[LW70]. Since well-foundedness of ωω
ω

implies the totality of every
function in M, we thus conjecture that SCT soundness is provable in
RCA0 plus well-foundedness of ωω

ω
.
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